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Abstract

Motivation: With growing exchanges of people and merchandise between countries, epidemics have

become an issue of increasing importance, thus epidemiological surveillance is now a global procedure

rather than a country-based one. Combining information of country-specific datasets can now reveal

epidemic spreading patterns that were not possible to detect before, but phylogenetic algorithms are often

hard to use and integrate in analysis frameworks and tools.

Results: The developed library is a command line application that conforms to the phylogenetic analysis

workflow and is highly performant, extensible, reusable, and portable. It differs from other existing tools as

it was built to be continuously extended and not just serve a single purpose. It enables reading datasets,

distance matrices, and phylogenetic trees from files, calculating and correcting distance matrices, inferring

and locally optimizing phylogenetic trees, and writing distance matrices and phylogenetic trees to files.

Availability: The code of the developed library is publicly available at https://github.com/Luanab/phylolib

along with its documentation, and for testing purposes, this library is hosted in a server as a Docker image.

A fully extended version of this article is available at http://arxiv.org/abs/2012.12697.

Contact: luana.silva@tecnico.ulisboa.pt

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Evolutionary relationships between species are usually inferred through

phylogenetic analysis, which provides phylogenetic trees computed from

allelic profiles built by sequencing specific regions of the sequences and

abstracting them to categorical indexes. The process of phylogenetic

analysis consists of parsing, assembling, and profiling the sequences, so

that they can then be processed by a distance calculation metric and an

optional distance correction metric, followed by an inference algorithm

and multiple optional local optimizations [1]. This process is exposed in

projects like INNUENDO [2], which performs these operations in High

Performance Computing (HPC) [3] pipelines. However, most of them, like

INNUENDO, do not compute the steps after the parsing, assembling and

profiling of sequences in the pipelines, because there is not yet a library

that can be integrated to compute those parts.

With growing exchanges of people and merchandise, epidemics have

become increasingly important, and combining information of country-

specific datasets can now reveal unknown spreading patterns that were not

possible to detect before, but phylogenetic algorithms are often hard to

use and integrate in analysis frameworks and tools. There are hundreds

of computational phylogenetics tools out there that are commonly used to

address this problem. And, although they all try to achieve the same goal,

which is to build a phylogenetic tree, they all differ widely in the way

they operate, the formats they support, and the criteria and algorithms they

implement, as shown in Supplementary Table S1. Due to those differences,

the use of different tools may result in different phylogenetic trees [4] from

the same algorithm. There is not yet a library that tries to integrate all of

the algorithms into just one library that works on all platforms and can be

integrated with other tools.

The PhyloLib project was created to address these problems by

implementing the last four steps of the phylogenetic analysis workflow,

namely the distance calculation, distance correction, inference algorithm,

and local optimization steps, in one single tool. The distance calculation

step consists of producing a distance matrix from a dataset, including

several sequences, through a distance calculation method, such as

Hamming [5], GrapeTree [6], or Kimura, that calculates the distances

between each pair of sequences. The dataset can be represented in

several formats, including MLST, MLVA, FASTA, and SNP. The distance

correction step is optional and it takes a distance matrix and corrects each

distance using a correction formula like the Jukes-Cantor model [7]. The

inference algorithm step infers a phylogenetic tree from a distance matrix

by running a clustering algorithm, like goeBURST [8], GrapeTree [6],

UPGMA, or NJ by Studier and Keppler [9]. The phylogenetic tree can be
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represented in several formats, including Newick [10] and Nexus [11].

The local optimization step is optional and tries to locally optimize a

phylogenetic tree through an algorithm, such as LBR [6].

2 Approach

This project boils down to the development of a command line application

in Java, that conforms to the phylogenetic analysis workflow and is

highly performant, extensible, reusable, and portable. It is different from

other existing tools (Supplementary Table S1) in the sense that it was

built to be continuously extended and not just serve a single purpose.

It enables reading datasets, distance matrices, and phylogenetic trees

from files, calculating and correcting a distance matrix, inferring and

locally optimizing a phylogenetic tree, and writing distance matrices and

phylogenetic trees to files. The formats and algorithms available in it are the

ones previously mentioned plus some other similar inference algorithms.

Additionally, it provides the capabilities of executing only certain steps of

the workflow as well as outputting the results of each step, which can be

used as a way to stop and resume the workflow whenever the user desires.

This is another thing that other tools do not offer, yet is particularly useful

in certain scenarios, such as when the user intends to run several inference

algorithms over the same input data, but does not wish to waste time or

resources computing the same distance matrix for all of them. Being a

command line application, each call to the library receives its commands

through the CLI arguments. All commands and options are optional and

case insensitive, and the order in which they are declared is irrelevant.

Each command is represented by its name, type, and options, separated by

a space, and is separated from other commands by a colon. Each option is

represented by its name preceded by two dashes, or by a letter preceded

by a dash, and followed by an equals sign and its corresponding value.

The available commands are respectively distance, correction,

algorithm, and optimization, each respectively defining a step

in the workflow. The type and options declared in a command specify

its execution, namely the type identifies the implementation for that

command, and the options specify details for that implementation. For

example, if the command isalgorithm then the type may begoeburst

and an option may be--lvs. Besides the custom options that may be used

by each command and specific type, such as --lvs or -l, an option that

may be declared for every command is --out or -o, and it defines the

output file for the command. Other options that a command may or may

not use, depending on its input needs, are --dataset, --matrix, and

--tree, or -d, -m, and -t, each respectively defining a data type file

input in the workflow. All of these file options, including --out, are

represented by a format name followed by a colon and a file location.

An example use case is to compute the goeBURST algorithm with three

locus variants and the output in Newick to a file tree.txt, using the

Hamming distance, with the dataset as input in SNP format from a file

dataset.txt, and the LBR optimization, with the output in Newick to

a file out.txt, as follows:

phylolib algorithm goeburst -l=3 -o=newick:tree.txt

: distance hamming -d=snp:dataset.txt

: optimization lbr -o=newick:out.txt

The architecture of this project takes into account reusability, thus the

commands and data types concentrate as much reusable code as possible in

common hierarchical classes. As a result, it also improves its extensibility

as it becomes easier to extend commands and data types, since most of the

code necessary to implement a command or data type is already written.

Nonetheless, performance is also taken into account in the implementation,

as some code that could be reused is not, due to optimizations that can be

made specifically to some algorithm implementations.

3 Evaluation

The results of the time and memory benchmarks developed for the

experimental evaluation are represented as a function of the number of

profiles n and can be seen in Supplemental Figures S1 through S8.

The time performance benchmarks show that the implementations of the

algorithms conform to their theoretical time complexity, namely O(n3)

for NJ algorithms and O(n2) for MST and GCP algorithms. However,

the implementation of the GrapeTree algorithm was shown to have a

considerable overhead compared to other MST and GCP algorithms,

despite having the same time complexity. Meanwhile, the memory

performance benchmarks lead to the conclusion that the implementations

of the MST and GCP algorithms have a memory complexity of O(n2),

while the implementations of the NJ algorithms tend more towards

a memory complexity of O(n). However, despite showing that the

implementations of the NJ algorithms have a lower memory complexity,

it is also shown that they seem to have an overhead great enough to still

require more memory than the implementations of the MST and GCP

algorithms with smaller datasets.

4 Conclusion

The aim of this project has been the development of a library that

is efficient, reusable, extensible and portable. However, it can still

be further extended to include more distance and correction metrics,

inference and local optimization algorithms, and dataset, distance matrix

and phylogenetic tree formats. Furthermore, it can still be extended in

other ways, namely by including other optional steps in the phylogenetic

analysis workflow, such as the dynamic addition of relationships between

the inference algorithm and local optimization steps, and the calculation

of visualization coordinates after all other steps. Also, despite it already

being efficient, its time and memory performances can still be improved

upon by, for example, introducing parallelization in the algorithms and a

cache system in the distance matrix.
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RELATED WORK

There are hundreds of computational phylogenetics tools out there that are commonly used in comparative
genomics, cladistics, and bioinformatics. Although they all try to achieve the same goal, which is to build a
phylogenetic tree, they all differ widely in multiple aspects.

These tools may represent phylogenetic trees in different formats, such as Newick, Nexus, or even a format of
their own. They may even deal with different input formats, such as FASTA, SNP, MLST, MLVA, among others.
They may also have different implementations, producing different phylogenetic trees by relying on a set of
algorithms for estimating phylogenies, such as Neighbour Joining, Maximum Parsimony, Globally Closest Pairs,
Bayesian phylogenetic inference, and Maximum Likelihood. They can also rely on several different distance
calculation and correction formulas, such as Hamming, Jukes-Cantor, Kimura, and so on. Some tools may provide
local optimization algorithms, such as LBR, SPR, NNI, and TBR, while others may not provide any.

These tools can have two different purposes. Some are meant to be used by other tools, in the format of a library
or command-line application. While others are created to be used directly by the final user, as a desktop or web
application, which may be free or paid. They can be implemented in different languages and used in different
platforms or even be specific to one platform. However, besides differing in many aspects, these tools may also
share some unappealing aspects, like not being easily integrated into existing phylogenetic analysis workflows,
not supporting a common API between algorithms, and not always providing efficient implementations.

Some examples of the most well-known libraries are PHYLIP [1], PhyML [2], RAxML [3], PAUP* [4], MrBayes [5]
and MEGA [6]. And, some examples of the most frequently used desktop and web applications, that are free,
are PHYLOViZ and PHYLOViZ Online. The major differences between these tools, regarding the phylogenetic
analysis workflow for distance matrix based algorithms, can be seen in Table S1. In this table, the first and last
columns represent the input and output formats supported by each tool, the columns with a number between
parentheses represent the four steps of the phylogenetic analysis workflow discussed in this chapter, and the
second to last column refers the other four columns and represents the steps of the workflow that provide an
output file.

EXPERIMENTAL EVALUATION

All components of this library were tested in terms of their functionality, through unit testing implemented
using the TestNG [7] framework, except for the local optimization which does not have another implementation
to compare its results to. However, only the algorithm component was tested in terms of time and memory
performances, since it is the core operation of the workflow and the one that requires the most time and memory
to execute. The experimental evaluation will focus itself on the time and memory performances, comparing
both the performance of each algorithm against each other, as well as the performance of each algorithm with an
implicit matrix versus with an explicit matrix.

The time and memory performances were tested through the implementation and execution of benchmarks
with 10 warmups and 20 iterations, over the first ten to one thousand profiles of the Streptococcus pneumoniae
dataset [8], using the Hamming distance as the distance calculation method. The results are represented as a
function of the number of profiles n. The same dataset and distance calculation method were used throughout
the benchmarks to provide an equal and fair evaluation to all algorithms. For that same reason, all tests were
performed in the same machine, in this case with a 2.6 GHz 6-Core Intel Core i7 processor and a 16 GB 2667 MHz
DDR4 memory.

Time
The average running time that each algorithm took to execute in the eager version, over the increasing number

of profiles of the given dataset, is represented in a plot graph in Figure S1, in milliseconds. From this graph it is
possible to see the difference in time complexity that exists between the NJ algorithms and all the others.

Despite having the same time complexity as other MST and GCP algorithms, it is possible to see from the
previous plot graph that the GrapeTree algorithm is much slower than the others.



Tool

Feature Input

Format

Distance

Calculation (1)

Distance

Correction (2)

Inference

Algorithm (3)

Local

Optimization (4)

Output

Processing

Output

Format

PHYLIP PHYLIP Hamming Fitch-Margoliash
UPGMA

NJ by Saitou & Nei
Robinson-Foulds

(1)

(2)

(3)

(4)

Newick

PhyML
PHYLIP

Nexus
Hamming

JC69

K80

F81

F84

HKY85

TN93

GTR

BioNJ
NNI

SPR

(3)

(4)
Newick

RAxML
PHYLIP

FASTA
Hamming

JC69

K80
- NNI

(3)

(4)
Newick

PAUP* Nexus Hamming HKY85
UPGMA

NJ by Saitou & Nei
- (3) Nexus

MrBayes Nexus Hamming

JC69

K80

F81

HKY85

GTR

BioNJ

NJ by Saitou & Nei
- (3) Nexus

MEGA MEGA Hamming

Jukes-Cantor

Tajima-Nei

Kimura 2-Parameter

Tamura 3-Parameter

Tamura-Nei

Log-Det

UPGMA

NJ by Saitou & Nei
- (3) Newick

PHYLOViZ

MLST

MLVA

SNP

Hamming -

goeBURST

CL

SL

UPGMA

WPGMA

NJ by Saitou & Nei

NJ by Studier & Keppler

- (3) Custom JSON

PHYLOViZ

Online

MLST

MLVA

FASTA

Newick

Hamming - goeBURST - (3) Custom JSON

PhyloLib

MLST

MLVA

FASTA

SNP

Symmetric Matrix

Asymmetric Matrix

Newick

Nexus

Hamming

GrapeTree

Kimura

Jukes-Cantor

goeBURST

GrapeTree

CL

SL

UPGMA

WPGMA

UPGMC

WPGMC

NJ by Saitou & Nei

NJ by Studier & Keppler

UNJ

LBR

(1)

(2)

(3)

(4)

Symmetric Matrix

Asymmetric Matrix

Newick

Nexus

Table S1. Major differences between some of the most well-know phylogenetic tools, regarding the phyloge-
netic analysis workflow.
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Fig. S1. Running times in milliseconds for ten to one thousand profiles using the eager version.

The difference in the results of the eager and lazy versions can be better compared in individual plot graphs.
Figures S2, S3 and S4 represent these differences for MST, GCP and NJ algorithms respectively.

From these individual plot graphs it is possible to see that the implementations of the algorithms conform to
their theoretical time complexities, namely O(n3) for NJ algorithms and O(n2) for MST and GCP algorithms. It is
also possible to see a difference in running time between the eager and lazy versions of the algorithms. However,
these differences are hardly noticeable due to the small impact that the distance calculation has on the workflow,
compared to the inference algorithm, except when compared to goeBURST, as its running times are small enough
to notice a difference. Thus, the benefit of storing the distance matrix in a file and reusing it is almost insignificant
in terms of running time for most algorithms.

Memory
The average memory usage that each algorithm took to execute in the eager version, over the increasing number

of profiles of the given dataset, is represented in a plot graph in Figure S5, in megabytes. From this graph it
is possible to see that the goeBURST algorithms require the lesser memory between all algorithms, while the
GrapeTree algorithm requires the most.

The difference in the results of the eager and lazy versions can be better compared in individual plot graphs.
Figures S6, S7 and S8 represent these differences for MST, GCP and NJ algorithms respectively.

From these individual plot graphs it is possible to see that the implementations of the MST and GCP algorithms
have a memory complexity of O(n2), while the implementations of the NJ algorithms tend more towards a
memory complexity of O(n). However, despite that, the implementations of the NJ algorithms seem to have an
overhead great enough to still require more memory than the implementations of the MST and GCP algorithms
with smaller datasets. It is also possible to see that the memory results do not follow a clear pattern and the
difference between the lazy and eager versions is almost inexistent. Thus, reusing a distance matrix stored in a file
is almost insignificant in terms of memory for all implemented algorithms.
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Fig. S6. Peak memory usage in megabytes for MST algorithms compared to their memory complexity.
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Fig. S7. Peak memory usage in megabytes for GCP algorithms compared to their memory complexity.
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